module ArrayLabels: sig .. end
let length: array('a) => int;
let get: (array('a), int) => 'a;
ArrayLabels.get a n
returns the element number n
of array a
.
The first element has number 0.
The last element has number ArrayLabels.length a - 1
.
You can also write a.(n)
instead of ArrayLabels.get a n
.
Raise Invalid_argument "index out of bounds"
if n
is outside the range 0 to (ArrayLabels.length a - 1)
.
let set: (array('a), int, 'a) => unit;
ArrayLabels.set a n x
modifies array a
in place, replacing
element number n
with x
.
You can also write a.(n) <- x
instead of ArrayLabels.set a n x
.
Raise Invalid_argument "index out of bounds"
if n
is outside the range 0 to ArrayLabels.length a - 1
.
let make: (int, 'a) => array('a);
ArrayLabels.make n x
returns a fresh array of length n
,
initialized with x
.
All the elements of this new array are initially
physically equal to x
(in the sense of the ==
predicate).
Consequently, if x
is mutable, it is shared among all elements
of the array, and modifying x
through one of the array entries
will modify all other entries at the same time.
Raise Invalid_argument
if n < 0
or n > Sys.max_array_length
.
If the value of x
is a floating-point number, then the maximum
size is only Sys.max_array_length / 2
.
let create: (int, 'a) => array('a);
let init: (int, ~f: int => 'a) => array('a);
ArrayLabels.init n f
returns a fresh array of length n
,
with element number i
initialized to the result of f i
.
In other terms, ArrayLabels.init n f
tabulates the results of f
applied to the integers 0
to n-1
.
Raise Invalid_argument
if n < 0
or n > Sys.max_array_length
.
If the return type of f
is float
, then the maximum
size is only Sys.max_array_length / 2
.
let make_matrix: (~dimx: int, ~dimy: int, 'a) => array(array('a));
ArrayLabels.make_matrix dimx dimy e
returns a two-dimensional array
(an array of arrays) with first dimension dimx
and
second dimension dimy
. All the elements of this new matrix
are initially physically equal to e
.
The element (x,y
) of a matrix m
is accessed
with the notation m.(x).(y)
.
Raise Invalid_argument
if dimx
or dimy
is negative or
greater than Sys.max_array_length
.
If the value of e
is a floating-point number, then the maximum
size is only Sys.max_array_length / 2
.
let create_matrix: (~dimx: int, ~dimy: int, 'a) => array(array('a));
let append: (array('a), array('a)) => array('a);
ArrayLabels.append v1 v2
returns a fresh array containing the
concatenation of the arrays v1
and v2
.let concat: list(array('a)) => array('a);
ArrayLabels.append
, but concatenates a list of arrays.let sub: (array('a), ~pos: int, ~len: int) => array('a);
ArrayLabels.sub a start len
returns a fresh array of length len
,
containing the elements number start
to start + len - 1
of array a
.
Raise Invalid_argument "Array.sub"
if start
and len
do not
designate a valid subarray of a
; that is, if
start < 0
, or len < 0
, or start + len > ArrayLabels.length a
.
let copy: array('a) => array('a);
ArrayLabels.copy a
returns a copy of a
, that is, a fresh array
containing the same elements as a
.let fill: (array('a), ~pos: int, ~len: int, 'a) => unit;
ArrayLabels.fill a ofs len x
modifies the array a
in place,
storing x
in elements number ofs
to ofs + len - 1
.
Raise Invalid_argument "Array.fill"
if ofs
and len
do not
designate a valid subarray of a
.
let blit:
(
~src: array('a),
~src_pos: int,
~dst: array('a),
~dst_pos: int,
~len: int
) =>
unit;
ArrayLabels.blit v1 o1 v2 o2 len
copies len
elements
from array v1
, starting at element number o1
, to array v2
,
starting at element number o2
. It works correctly even if
v1
and v2
are the same array, and the source and
destination chunks overlap.
Raise Invalid_argument "Array.blit"
if o1
and len
do not
designate a valid subarray of v1
, or if o2
and len
do not
designate a valid subarray of v2
.
let to_list: array('a) => list('a);
ArrayLabels.to_list a
returns the list of all the elements of a
.let of_list: list('a) => array('a);
ArrayLabels.of_list l
returns a fresh array containing the elements
of l
.let iter: (~f: 'a => unit, array('a)) => unit;
ArrayLabels.iter f a
applies function f
in turn to all
the elements of a
. It is equivalent to
f a.(0); f a.(1); ...; f a.(ArrayLabels.length a - 1); ()
.let map: (~f: 'a => 'b, array('a)) => array('b);
ArrayLabels.map f a
applies function f
to all the elements of a
,
and builds an array with the results returned by f
:
[| f a.(0); f a.(1); ...; f a.(ArrayLabels.length a - 1) |]
.let iteri: (~f: (int, 'a) => unit, array('a)) => unit;
ArrayLabels.iter
, but the
function is applied to the index of the element as first argument,
and the element itself as second argument.let mapi: (~f: (int, 'a) => 'b, array('a)) => array('b);
ArrayLabels.map
, but the
function is applied to the index of the element as first argument,
and the element itself as second argument.let fold_left: (~f: ('a, 'b) => 'a, ~init: 'a, array('b)) => 'a;
ArrayLabels.fold_left f x a
computes
f (... (f (f x a.(0)) a.(1)) ...) a.(n-1)
,
where n
is the length of the array a
.let fold_right: (~f: ('b, 'a) => 'a, array('b), ~init: 'a) => 'a;
ArrayLabels.fold_right f a x
computes
f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...))
,
where n
is the length of the array a
.let sort: (~cmp: ('a, 'a) => int, array('a)) => unit;
Pervasives.compare
is
a suitable comparison function, provided there are no floating-point
NaN values in the data. After calling ArrayLabels.sort
, the
array is sorted in place in increasing order.
ArrayLabels.sort
is guaranteed to run in constant heap space
and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant stack space.
Specification of the comparison function:
Let a
be the array and cmp
the comparison function. The following
must be true for all x, y, z in a :
cmp x y
> 0 if and only if cmp y x
< 0cmp x y
>= 0 and cmp y z
>= 0 then cmp x z
>= 0ArrayLabels.sort
returns, a
contains the same elements as before,
reordered in such a way that for all i and j valid indices of a
:cmp a.(i) a.(j)
>= 0 if and only if i >= jlet stable_sort: (~cmp: ('a, 'a) => int, array('a)) => unit;
ArrayLabels.sort
, but the sorting algorithm is stable (i.e.
elements that compare equal are kept in their original order) and
not guaranteed to run in constant heap space.
The current implementation uses Merge Sort. It uses n/2
words of heap space, where n
is the length of the array.
It is usually faster than the current implementation of ArrayLabels.sort
.
let fast_sort: (~cmp: ('a, 'a) => int, array('a)) => unit;
let unsafe_get: (array('a), int) => 'a;
let unsafe_set: (array('a), int, 'a) => unit;